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Abstract

Application of Fourier Transform for processing 3D NMR spectra with random sampling of evolution
time space is presented. The 2D FT is calculated for pairs of frequencies, instead of conventional sequence
of one-dimensional transforms. Signal to noise ratios and linewidths for different random distributions
were investigated by simulations and experiments. The experimental examples include 3D HNCA,
HNCACB and 15N-edited NOESY-HSQC spectra of 13C 15N labeled ubiquitin sample. Obtained results
revealed general applicability of proposed method and the significant improvement of resolution in com-
parison with conventional spectra recorded in the same time.

Introduction

Multidimensional NMR spectroscopy is known to
be one of most powerful tools in biomolecular
research. It is, however, also one of most time-
consuming methods. Despite growing number of
high field spectrometers used in biomolecular
laboratories, still conventional multidimensional
experiment lasts 10s of hours. This is because of
sampling requirements (Szyperski et al., 2002),
which, contrary to sensitivity limits, increase with
B0 value.

In order to generate N-dimensional data set
with (N )1) indirectly sampled time domains one
needs to acquire one-dimensional FID for each
combination of equally spaced indirectly sampled
evolution times. Then, spectrum can be achieved by
sequence of N one-dimensional Fourier transforms

(Ernst and Anderson, 1966) Equation 1, with
respect to each time dimension separately.

SðxÞ ¼
Z1

�1

dt fðtÞ expð�ixtÞ (1)

For N )1 transforms, each requiring m points,
it is necessary to acquire regarding requirements of
quadrature 2N)1 � mN)1 one-dimensional FIDs,
which means that time of experiment increases
exponentially with number of dimensions.

Miscellaneous methods of non-conventional
probing of evolution time space developed in last
few years allowed for an acceleration of multidi-
mensional experiments. Amongst them, applica-
tions using radial sampling are most often employed
and investigated. This kind of sparse sampling
is based on the idea of Accordion Spectros-
copy (Bodenhausen and Ernst, 1981, 1982) and
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backprojection imaging technique (Lauterbur,
1973). The simplest example of recovering of spec-
tral parameters in frequency domain is direct eval-
uating of frequencies from projection spectra by
solving systems of linear equations for each peak in
the new variants of Reduced Dimensionality (RD)
techniques (Ding and Gronenborn, 2002; Kim and
Szyperski, 2003; Koźmiński and Zhukov, 2003).
However, owing to direct interpretation and simple
analysis, numerous approaches for the recovering
spectrum of full dimensionality from the set of
projections were proposed (Kupče and Freeman,
2003, 2004a, b; Freeman and Kupče, 2003; Coggins
et al., 2004, 2005). One can choose between deter-
ministic and statistical methods, as it is possible to
geometrically reconstruct spectrum from projection
data (deterministic case) or to fit spectrum to be
compatible with set of projections (Yoon et al.,
2006). Additive backprojection is the simplest
deterministic method, but suffers from line-broad-
ening, ridges and false peaks. More sophisticated
deterministic approach to reconstruction is lowest-
value algorithm (Freeman and Kupče, 2003), vari-
ants of multiway decomposition (Malmodin and
Billeter, 2005a, b) and iterative frequency identifi-
cation (Eghbalnia et al., 2005). Other methods of
fast acquisition include: multidimensional decompo-
sition (Orekhov et al., 2003; Luan et al., 2005;
Tugarinov et al., 2005), filter diagonalization
(Mandelstam et al., 1998; Armstrong et al., 2005),
maximum entropy reconstruction (Barna et al., 1987;
Rovnyak et al., 2004; Sun et al., 2005; Delsuc and
Tramesel, 2006; Frueh et al., 2006), and spatially
encoded chemical shift evolution followed by spa-
tially resolved acquisition (Frydman et al., 2002).
Also, algorithms of FFT of non-equispaced data
based on polynomial interpolation (Dutt and Ro-
khlin, 1995) were employed to reconstruct spectrum
from sparse time domain data sets (Marion, 2005).

In our recent communication (Kazimierczuk
et al., 2006) we presented the application of FT
with respect to two or more time variables made in
a single step as a reliable approach to processing of
sparsely sampled multidimensional NMR data
sets. For example in 2D case, instead of making
sequence of two Fourier transforms:

fðt1; t2Þ !
FT1

S1ðt1;x2Þ !
FT2

Sðx1;x2Þ

these two transforms are calculated in one step,
i.e., real discrete cosine transform of signal

fðt1; t2Þ ¼ cosðX1t1Þ cosðX2t2Þ is given by Equation
2 where summation occurs for each pair of
frequencies:

Sðx1;x2Þ ¼
Xt1max

t1¼0

Xt2max

t2¼0
fðt1; t2Þ cosðx1t1Þ cosðx2t2Þwðt1; t2Þ

(2)

In other words for each point of frequency domain
ðx1;x2Þ, the product of time domain signal fðt1; t2Þ
andcosðx1t1Þ cosðx2t2Þ shouldbe calculated for each
point of evolution time space (t1 and t2) and summed.
In principle, to calculate above integral more
accurately for non-equispaced data, weighting terms
w(t1, t2) corresponding todistributionof (t1, t2) points
maybeused.As shownbelow theweighting termsare
optional. They could be considered as a apodization
function or used in integration procedure as two-
dimensional time surface elements (triangles).

Since, in the most of NMR experiments, the
frequency offset is placed at the center of fre-
quency region of interest the quadrature detection
is necessary for determination of sign of peak
frequencies. Natural extension of well known 1D
quadrature detection (described by real part of
complex FT) for such 2D transform is acquiring
four sine–cosine modulations of indirectly mea-
sured time dimension signal, their appropriate
transformation and coaddition (Equation 3a–d):

fðt1; t2Þ ¼ cosðX1t1Þ cosðX2t2Þ ! Sðx1;x2Þ

¼
Xt1max

t1¼0

Xt2max

t2¼0
fðt1; t2Þ cosðx1t1Þ cosðx2t2Þwðt1; t2Þ

(3a)

fðt1; t2Þ ¼ cosðX1t1Þ sinðX2t2Þ ! Sðx1;x2Þ

¼
Xt1max

t1¼0

Xt2max

t2¼0
fðt1; t2Þ cosðx1t1Þ sinðx2t2Þwðt1; t2Þ

(3b)

fðt1; t2Þ ¼ sinðX1t1Þ sinðX2t2Þ ! Sðx1;x2Þ

¼
Xt1max

t1¼0

Xt2max

t2¼0
fðt1; t2Þ sinðx1t1Þ sinðx2t2Þwðt1; t2Þ

(3c)
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fðt1; t2Þ ¼ sinðX1t1Þ cosðX2t2Þ ! Sðx1;x2Þ

¼
Xt1max

t1¼0

Xt2max

t2¼0
fðt1; t2Þ sinðx1t1Þ cosðx2t2Þwðt1; t2Þ

(3d)

Analogically to 1D case, quadrature notation for
2D �single step� transform can be presented in
Equation 4, using Quaternion numbers (Hamilton,
1847), which are non-commutative four-dimen-
sional equivalents of complex numbers.

Sðx1;x2Þ¼
Xt1max

t1¼0

Xt2max

t2¼0
expð�iX1t1Þfðt1;t2Þexpð�jX2t2Þwðt1; t2Þ

(4)

where: i2 = j2 = k2 =) 1 and ij =)ji = k, jk =
)kj =i, ki =)ik =j and f(t1, t2) = exp(iW1 t1)
exp(jW2t2).

Required spectrum with purely absorptive
lineshapes is the real part of Equation 4. Note that
traditional acquisition of 2D data sets requires
recording of the same four modulations for each
t1/t2 point, however, in this case the data is treated
by the sequence of 1D complex FT using the 1D
quadrature.

The multidimensional FT performed in a single
step, in contrast to the sequence 1D FT does not
require data points distributed on a straight lines
in evolution time space. Thus demands for time
domain sampling are less restrictive than in con-
ventional case. In fact it is possible to sample it in
arbitrarily chosen way. Previously we have pre-
sented spectra achieved by transformation of data
points deployed radially and spirally in evolution
time space, showing that the later give significantly
better results. In the present work we prove the
ability of Fourier Transform as formulated above
to process 3D NMR data sets with randomly
sampled two time domains.

The idea of random digital sampling is not new,
many variants of Digital Alias-free Signal Pro-
cessing (DASP) methods have been studied for
several decades (Marvasti, 2001). Because of lost
of data or its inaccessibility, 1D FT of sparse,
random data was employed in astronomy, geo-
physical sciences, medicine, and other disciplines.
On the other hand, in some applications (includ-
ing NMR) non-uniform sampling may be used
to perform digital analysis over wide band of

frequencies using relatively slow sampling rate
(even below Nyquist density). Degradation of
spectra achieved from uniform sampling with
random deviations was also studied (Berkovitz
and Rusnak, 1992), as every spectrum is in fact
sampled randomly – and sometimes effects of
sampling jitter on FFT processing are strong.
Randomly sampled data sets may be processed in
several different ways.

First, interpolation by polynomials may allow
one to achieve equispaced data points which could
be processed by standard FFT algorithms. This
approach was discussed recently not only in gen-
eral papers on signal processing (Marvasti, 1996)
but also in the particular case of multidimensional
NMR (Marion, 2005). Main disadvantage of
interpolation is the presence of artifacts caused by
crude approximation of periodic functions by
polynomials (even of high order). Moreover, it
allows non-uniform sampling in one dimension
only (which can be omitted by employing RD
methods).

Second approach, which was not employed in
multidimensional NMR, is 1D direct Fourier
Transformation of data, not using FFT algo-
rithms. Properties of such transformation are quite
well known and were discussed in details before
(Tarczynski and Allay, 2004; Tarczynski and Qu,
2005). Two kinds of weighting may be used here:
weighted samples (WS) and weighted probability
(WP). First of them is based on uniform proba-
bility density function (PDF) used to generate time
points. Then, weighting is applied in spectrum
estimator formula analogically to Equation (2). It
should be noted, that weighting terms w(t1, t2) in
WS are not connected with accurate values of
distance between points. They are rather values of
non-uniform PDF (such as exponential or
Gaussian) with coordinates of (t1, t2). This oper-
ation is similar to well known in NMR FID
weighting procedure – time domain signal is mul-
tiplied point after point by values of an arbitrary
chosen function of time. Second approach, is
Weighted Probability method – sampling PDF is
not uniform (but Gaussian or exponential, for
example), but no weighting is used during Trans-
formation (i.e., w(t1, t2) = 1). Both approaches
are presented in experimental examples and simu-
lations below. Moreover, we tried another solution
– as the distances between points randomly dis-
tributed in time space are known, this information
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could be used in some cases for improving accu-
racy of integration. In other words FT integral can
be calculated numerically employing one of well
known methods (mid-point or trapezoidal rule in
1D case). For one-step two-dimensional FT, value
of integrant is multiplied by appropriate part of
evolution time surface. In the case of random
sampling the surface can be divided into triangles
(Yeh, 1997), each built of three vectors connecting
experimental time points (Figure 1). Then, inte-
gration could be performed by summing volumes
of each truncated prism according to Equation 5:

Sðx1;x2Þ ¼
Xn:o:t:
n¼1

Dn
pqr

1

3
½expð�ix1t

p
1Þfðt

p
1; t

p
2Þ expð�jx2t

p
2Þ

þ expð�ix1t
q
1Þfðt

q
1; t

q
2Þ expð�jx2t

q
2Þ

þ expð�ix1t
r
1Þfðtr1; tr2Þ expð�jx2t

r
2Þ�

(5)

where, n.o.t. is the number of triangles, Dpqr
n means

surface of triangle number n with apexes p, q, r,
and f(t1

p, t2
p), f(t1

q, t2
q), f(t1

r , t2
r) are signal amplitudes.

The Dpqr
n term corresponds to w(t1, t2) in Equation

4. Note, that it is not equal to either WS or WP
method. Other methods of processing of non-lin-
early sampled signals employ theory of uniform
almost periodic functions (Ferreira, 1999).

Simulations

Conventional processing ofND-NMR data requires
equally spaced data points placed on rectangular

grid due to sequential usage of 1D FT in the
multidimensional spectra and necessities of com-
monly employed Fast Fourier Transform algo-
rithm. Therefore, in each dimension the maximum
distance between two neighboring points is defined
by Nyquist Theorem e.g. it is inversely propor-
tional to expected spectral width (SW). On the
other hand, the spectral resolution is proportional
to maximum value of evolution time period. In
consequence it is not possible to increase SW
without decreasing spectral resolution (keeping
constant number of time points). If Nyquist The-
orem is not fulfilled then false (folded) signals
appear. This is an intrinsic feature of conventional
sampling and independent of processing way
(�one-step� 2D transform of such data will give the
same effect). However, the new approach allows
for any kind of sampling of evolution time space
and if it is non-conventional then there is no sharp
limit for SW. Instead, even for perfect 2D signal
f(t1, t2) = cos(W1t1)cos(W2t2) without any noise
the non-zero value of integral estimated by sum-
mation given in Equation 4 would appear for
frequency pairs ðx1;x2Þ other than ðX1;X2Þ. This
can be shown on the example of 1D FT of con-
ventionally (Figure 2a–e) and randomly
(Figure 2f–j) sampled simulated FID of constant
length with varying number of points. In the case
of equispaced time domain points undersampling,
i.e., sampling with the rate lower than Nyquist
frequency, results in signal folding. The FT of the
same number of input data points but spread at
random positions provide spectra with the single
peak of correct frequency, however perturbed by

Figure 1. (a) The distribution of 512 time domain data points with probability density function: exp(�t2=r2Þ;r ¼ 0:5, (b)
triangulation of evolution time surface using points shown in (a).
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an additional noise. On the other hand the reso-
lution of conventionally achieved multidimen-
sional spectrum is also limited by Nyquist
Theorem. Upper limit for dwell time in each
dimension limits the maximum achievable evolu-
tion time (tmax). Consequently, the resolution is
proportional to acquisition time of periodic signal.
Random sampling of the evolution time space
gives no folded signals and it is possible to increase
values of tmax together with resolution as much as
desired with the expense of increasing noise.

In the next step we investigated the effects of
number of points and mode of random distribu-
tion on signal to noise ratio in two-dimensional
FT. To simulate signal obtained in real experi-
ment, one of modulations was assumed to be
achieved from constant-time evolution period and
for the second the typical transverse relaxation
rate of aliphatic carbon nuclei in proteins was
taken. Time domain points were distributed ran-
domly over the entire evolution time space. Both
coordinates of time domain points were obtained

independently. Various distributions of different
numbers of random points with constant t1max and
t2max were tested. Calculations of standard devia-
tion r of spectrum estimator made for WS and
WP methods applied to periodic function of fre-
quency and decay rate typical for NMR experi-
ment show that both are unbiased, i.e., frequency
independent, estimators with the same r2 (Tar-
czynski and Allay, 2004). Real experimental data,
however, contains thermal noise and it is better to
use WP method preferring points of smaller time
values (where signal to thermal noise ratio is bet-
ter). The third method based on surface integra-
tion improves results for the density of data of
points (defined for 2D case in Equation 6) higher
than Nyquist density qN (Equation 7):

q ¼ n=ðt1max � t2maxÞ (6)

qN ¼ sw1 � sw2 (7)

Figure 2. Simulated 1D spectra using different numbers of time domain points distributed from 0 to 1 s. The time domain signal
fulfills the formula: fðtÞ ¼ cosð2p350tÞ expð�5tÞ. (a–e) Conventional sampling with constant time increments of 1/(n )1) seconds,
where n is the number of points equal to: 64, 128, 256, 512, and 1024 points, in a, b, c, d, and e, respectively. The spectra shown on
traces (f–j) are calculated using the same number of randomly distributed time domain points. Gaussian distribution was used i.e.
expð�t2=r2Þ;r ¼ 0:5. The real cosine FT was used, owing to symmetry only positive frequencies are shown. The doted lines in (a–f)
denote the maximum frequencies according to Nyquist theorem.
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Relative points density, can be defined as:

H ¼ q
qN

(8)

where n is number of points, sw1 and sw2 are
spectral widths in indirect dimensions. However,
when the number of sampled data points de-
creases, surface integration gives more noise than
WP or WS method. Moreover this noise is non-
uniformly distributed in the frequency domain.

The plot of signal to noise ratio in simulated
spectrum calculated using WP method and surface
integration described by Equation 5 is given in
Figure 3. The same behavior could be observed in
1D random case when integration using trapezoi-
dal or mid-point rule is compared to simple sum-
mation. It is noteworthy that the sampling noise
for direct summation method (WS or WP) is al-
most independent of relative points density
Equation 8, while the S/N increases linearly withffiffiffi
n
p

: In the case of Gaussian distribution of time
domain points the apparent linewidths obtained in
surface integration method are reduced due to
overestimation of points for long evolution times.
However, the strong truncation artifacts are

introduced. Similar effect could be observed by
employing inappropriate weighting function in the
case of WS or WP method. Therefore, as in all
simulated FIDs the average density of time
domain points did not extend the Nyquist density,
all Fourier Transforms presented here were made
using WP and WS method, not integration over
triangulated time domain.

In the case of random 64-point sampling the
linewidth is overestimated due to noise. The cal-
culated spectra with corresponding time domain
point distribution are shown in Figure 4. Signal to
noise ratios and linewidths obtained from the
simulations are given in Tables 1 and 2, respec-
tively. The plot of S/N as a function of

ffiffiffi
n
p

pre-
sented in Figure 5a reveal linear behavior in all
cases as expected (Tarczynski and Allay, 2004;
Tarczynski and Qu, 2005).

The linewidth values obtained in conventional
spectra are inversely proportional to maximum
evolution times (i.e., to the number of points in
each dimension), respectively. In non-conventional
spectra obtained by FT from randomly distributed
time domain points the linewidth is independent of
the number of points. While the resolution
achievable from limited number of time domain
points with random distribution is significantly
improved, the signal to noise ratio is reduced due
to �sampling� noise. Contrary to conventional 2D
case, in randomly sampled 2D interferogram each
time domain point contributes unique information
about both involved frequencies, thus reduces
relative amplitude of the �sampling� noise.

Experimental

All the spectra presented were recorded for 1.5 mM
13C, 15N-double labeled human ubiquitin in 9:1
H2O/D2O at pH = 4.5 at 298 K. The 3D HNCA
experiments were acquired on aVarianUnity Inova
400 spectrometer equipped with a Performa II z-
PFG unit and using the 5 mm 1H, 13C, 15N – triple
resonance probehead with high power 1H, 13C, and
15N p=2 pulses of 6.2, 16.0, and 49.0 ls, respec-
tively. For 3D HNCACB and 3D 15N-edited
NOESY-HSQC spectra Varian Unity Plus 500
spectrometer equipped with a Performa II z-PFG
unit and the 5 mm 1H, 13C, 15N – triple resonance
probehead with high power 1H, 13C, and 15N p/2
pulses of 6.3, 13.0, and 36.0 ls, respectively, was

Figure 3. The plot of spectral signal to noise ratio of simulated
spe c t rum fðt1; t2Þ ¼ expð�i � 2p � 300Hz � t1 � j � 2p � 300Hz�
t2 � 50Hz � t2Þ in function of relative density of time domain
points ðH ¼ q=qNÞ comparing: WP method and surface integra-
tion procedure (512 evolution time points of Gaussian PDF:
expð�t2=r2Þ;r ¼ 0:5Þ. Spectral widths and maximum evolution
times were equal sw1 = sw2, t1max = t2max = tmax = 0.02 s.
Q was changed by varying both spectral widths (and qN

consequently) keeping constant number of points and evolution
time surface tmax

2 (and q consequently).
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employed. For the random sampling the conven-
tional pulse sequences were adapted from the Var-
ian Userlib BioPack package (Varian Inc., Palo
Alto) by setting evolution times to randomly gen-
erated values normalized to assumed maximum
evolution times. Both coordinates of t1/t2 points
were calculated independently using generator of
pseudo-random numbers implemented in GSL
package (Galassi et al., 2003). For all presented
spectra four scans were coherently added for four
data sets for each t1/t2 data point, relaxation delay
of 1.4 s, and the t3 acquisition time of 102 and
85 ms, were used on 400 and 500 MHz spectrom-
eter, respectively. For conventional spectra cosine
weighting function was applied prior to Fourier
transformation in all dimensions, while in the case
of random sampling with exponential or Gaussian
data point distribution only in t3. The data are
transformed for 128� 256� 430 real points in
F1(

15N), F2(
13C) and F3(

1H), respectively, only
amide protons region was chosen. Because in all
cases average time domain points density as defined
in Equation 6 is below Nyquist density, all 2D
Fourier Transforms were made using WS (uniform

sampling) or WP (Gaussian sampling) formula.
The randomly sampled t1/t2 interferograms were
transformed as described in text employing PCwith
3.0 GHz Pentium 4 processor under Linux oper-
ating system using C code. The computing time of
n � m� 25 ns was achieved (where n and m are
numbers of frequency and time domain points,
respectively), i.e., for processing spectrum with
n = 128 � 256 � 430 resolution, with m = 1024
recorded t1/t2 points requires ca. 6 min. The
resulting real parts of 3D spectra were saved in the
format of SPARKY program (Goddard and
Kneller, 2002). The signal-to-noise ratios were
computed using program SPARKY with noise
estimated using 10,000 of randomly sampled spec-
tral points.

Results and discussion

To investigate the influence of various sampling
modes of evolution time space on obtained spec-
tra, the signal-to-noise ratio of the signal of I36
CA–N–HN correlation was evaluated and listed

Figure 4. The distribution of time domain data points (a, b) and spectra (c, d) transformed using respective t1/t2 interferograms
calculated according to the formula: fðt1; t2Þ ¼ expð�i � 2p � 350Hz � t1 � j � 2p � 500Hz � t2 � 50Hz � t2Þ þ gðt1; t2Þ, where g reflects
thermal noise of Gaussian distribution. Gaussian distribution was also used for distribution of time domain data points with
probability density: expð�t2=r2Þ;r ¼ 0:5. The number of points equal to 512 in the both cases, however in the case of conventional
sampling (a and c) the maximum t1 and t2 are limited by number of steps and spectral width (1300� 2900 Hz in F1 and F2,
respectively), while in the case of random sampling (b and d) the maximum t1 and t2 are set to 22.5 and 18 ms, respectively. 128� 128
frequency domain points were calculated.
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for comparison in Table 3. The plots of S/N in
function of square root of the number of data
points are presented in Figure 5b. As expected the
experimentally obtained signal to noise ratio
reveal similar behavior to the results of simula-
tions. The comparison of contour plots extracted
from 3D HNCA spectra obtained in the same

experimental time by conventional and random
sampling of evolution time space is presented in
Figure 6. The F1F2 planes for x3ð1HÞ ¼ 8:10 and
8.74 ppm, (a, b) and (c, d), respectively are shown.
It is clearly visible that the plots (b and d)
obtained by single step Fourier Transform of
randomly sampled t1/t2 space give rise to proper

Table 1. The comparison of signal to noise ratio obtained by FT of simulated time domain signal with and without thermal noise g
described in caption to Figure 4. The probability density of time domain points was defined as expð�t=rÞ and expð�t2=r2Þ for
exponential and Gaussian distribution, respectively. r of 0.5 s was used. Spectral width of 1300 Hz and 2900 Hz in F1 and F2 was

assumed. In the case of random sampling evolution times were normalized to the range of 0–25 ms and 0–20 ms, for t1 and t2,

respectively

Number of points Random without thermal noise Random with thermal noise

Uniform Gaussian Exponential Uniform Gaussian Exponential

64 11.8 15 15.3 8.6 13.6 12.1

128 17.3 21.5 21.2 12.8 19.8 15.9

256 23.9 30.8 29.7 17.3 27.9 21.6

512 32.7 42.4 41.6 24.5 38.9 29.9

1024 45.8 59.5 59.4 35.0 54.4 42.6

Table 2. The comparison of half-height signal linewidth in Hz, obtained in FT of simulated time domain signal with thermal noise g.
The simulation parameters are the same as in Table 1

Number of pointsa Cartesian grid Random

Uniform Gaussian Exponential

LW1 LW2 LW1 LW2 LW1 LW2 LW1 LW2

64 (8� 8) 171.5 405.0 48.5 61.7 44.8 63.3 74.5 73.9

128 (8� 16) 176.6 198.8 45.2 61.0 37.3 60.6 59.3 77.9

256 (16� 16) 82.2 192.2 47.0 56.8 37.1 52.5 62.3 87.4

512 (16� 32) 82.9 98.2 43.5 60.3 37.4 54.9 71.8 87.5

1024 (32� 32) 41.1 97.4 45.3 61.5 35.9 53.9 61.2 82.6

aThe number of points in t1 and t2 for conventionally sampled signal is given in parenthesis.

Figure 5. Plots of the signal to noise ratio versus square root from the number of data points n, obtained in simulations, according to
parameters given in caption to Figure 4: without (a) and with (b) thermal noise, and experimentally (c), measured for 13CA–15N–1HN
signal of I36 in 3D HNCA spectrum of 13C, 15N-labeled ubiquitin on 400 MHz spectrometer. Experimental parameters are given in
caption to Figure 6. Following sampling schemes were used: conventional ð}Þ, uniform (h), Gaussian (n) and exponential (�).
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signals and retain the full information of con-
ventional 3D spectrum while the resolution
achieved in the same measurement time is signif-
icantly improved. It is noteworthy that the
enhanced F1F2 frequency domain resolution
increases the actual resolution in F3. In contrast to
previously reported experiments utilizing radial
and spiral sampling of evolution time space
(Kazimierczuk et al., 2006), the presented spectra
reveal no coherent artifacts which could lead to
misleading interpretations. In order to evaluate
practical usability in spectral analysis of experi-
ments acquired with randomly sampled t1/t2
interferograms, we show the comparison of strip
plots obtained in 3D experiments: HNCA in
Figure 7 and approximately 10 times less sensitive
(Sattler et al., 1999) HNCACB in Figure 8.

Table 3. The comparison of signal to noise ratio for the signal

at x3 ¼ 6:128 ppm, obtained by FT of 3D HNCA spectrum of
13C, 15N-ubiquitin. The density of time domain points was

defined as expð�t2=r2Þ for Gaussian distribution. r of 0.5 s

was used. Spectral width of 1300 and 2900 Hz in F1 and F2 was

set. In the case of random sampling evolution times were nor-

malized to the range of 0–22.5 ms and 0–18 ms, for t1 and t2,

respectively. For conventional sampling the maximum evolu-

tion times depended on spectral width and the number of points

Number of pointsa Conventional Random

Uniform Gaussian

64 (8� 8) 16.0 9.6 12.7

128 (8� 16) 24.2 13.3 19.4

256 (16� 16) 32.0 18.3 22.2

512 (16� 32) 36.7 25.0 32.1

aThe number of points in t1 and t2 for conventionally sampled
signal is given in parenthesis.

Figure 6. Comparison of contour plots of F1F2 planes at x3ð1HÞ ¼ 8:10 (a, b) and 8.74 ppm (c, d) obtained in 3D HNCA experiment
for 13C, 15N-labeled ubiquitin on 400 MHz spectrometer, using conventional (a and c) and random sampling (b and d), of evolution
time space. The spectral width of 1300� 2900� 5000 Hz was set in F1, F2, and F3, respectively. 16� 32 t1/t2 data points was recorded in
conventional experiment, i.e., the maximum evolution times t1 and t2 of 12.3 and 11.0 ms, respectively were achieved. In the case of
experiment with random sampling the maximum evolution times t1 and t2 of 22.5 and 18 ms, respectively, were used. Four scans were
coherently added in all four data sets for 512 t1/t2 data points, thus the acquisition time of both, conventional and randomly sampled
experiments were equal. The spectra were transformed with the resolution of 128 � 256� 1024 points in F1, F2, and F3, respectively.
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Again, the clearly visible advantage of spectra
acquired with the random sampling is increased
resolution for Glu16 residue cross peaks, over-
lapping with signals of Val26.

Important problem associated with techniques
used for reconstruction of high dimensional spec-
tra from sparse data sets is ability to work with
large number of signals of different amplitudes.
Theoretically, the sampling noise increases with
the number of signals in the same subspectrum,
thus reducing the apparent dynamic range of sig-
nal intensities. To check this, in some cases sig-
nificant, limitation we acquired 15N-edited
NOESY-HSQC spectrum of ubiquitin sample. The
contour plots are presented and compared with
conventional spectrum recorded in the same
experimental time in Figure 9. The results
evidenced improved resolution in the case of
spectrum obtained by transformation of randomly
sampled t1/t2 interferogram. Moreover, as in the
case of 1D FT, the relative peak intensities
are preserved. Measured noise level in the case
of randomly sampled experiment is only

approximately two times larger than for conven-
tional spectrum. However, due to reduced line-
widths in randomly sampled experiment only
slight reduction of resulting S/N ratio is observed.
Therefore experiments of high dynamic range of
signal amplitudes are possible. It is noteworthy,
that so far fast methods of multidimensional
NMR were not successfully employed, except
some impressive Multi-Dimensional Decomposi-
tion (MDD) examples (Orekhov et al., 2003) to
process NOESY data.

Above spectra do not reveal any coherent
artifacts present in methods of sparse data pro-
cessing based on polynomial interpolation (Mar-
ion, 2005) and, contrary to them, can be easily
extended to higher dimensionality by using
appropriate extension of QFT. Single step multi-
dimensional transform is nearly as fast as poly-
nomial interpolation-FFT sequence allowing for
achieving spectra after few minutes of computing
time (depending on resolution and number of time

Figure 7. An example of sequence-specific assignments of I13-
V17 fragment using 3D HNCA spectrum obtained for 13C, 15N-
labeled ubiquitin sample on 9,4 T NMR spectrometer using
conventional (a) and random sampling (b) of t1/t2 evolution
time space. Strips extending over the entire spectral width of
13CA dimension are defined for the amide groups of the
residues indicated in each strip. Experimental details are given
in caption to Figure 6.

Figure 8. An example of sequence-specific assignments of I13-
E18 fragment using 3D HNCACB spectrum obtained for 13C,
15N-labeled ubiquitin sample on 11.7 T NMR spectrometer
using random sampling of t1/t2 evolution time space. Strips
extending over the entire special width of 13CACB dimension
are defined for the amide groups of the residues indicated in
each strip. The spectral width of 1600� 9500� 6000 Hz was set
in F1, F2, and F3, respectively. The maximum evolution times t1
and t2 of 27.5 and 20 ms, respectively were used in experiment
with random sampling. Four scans were coherently added in all
four data sets for 4096 t1/t2 data points. The spectra were
transformed with the resolution of 128� 256� 1024 points in
F1, F2, and F3, respectively. The negative signals are plotted
using dotted line.
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points) on standard PC. It is a great advantage in
comparison with MDD and Maximum Entropy
Methods (MEM) which require much longer
computing times.

Moreover, our solution does not require
adjustment of any parameters, except optimization
of sampling PDF, which will be discussed elsewhere.

Conclusions

We have shown that multidimensional single step
Fourier Transform allows one to process ran-
domly sampled multidimensional NMR data. This
approach enables to optimize the utilization
of NMR spectrometers by the recording of

Figure 9. Comparison of contour plots of F2F3 planes at x1ð15NÞ = 123.2 ppm (a, b) and F1F2 planes at x3ð1HÞ = 8.12 ppm (c, d),
obtained in 15N-edited NOESY-HSQC experiment for 13C, 15N-labeled ubiquitin on 500 MHz spectrometer, using conventional (a and
c) and random sampling (b and d), of evolution time space. The spectral width of 1600� 6000 � 6000 Hz was set in F1, F2, and F3,
respectively. 32� 128 t1/t2 data points was recorded in conventional experiment, i.e., the maximum evolution times t1 and t2 of 20.0 and
21.3 ms, respectively were achieved. In the case of experiment with random sampling the maximum evolution times t1 and t2 of
25.0 ms, were used. Four scans were coherently added in all four data sets for 4096 t1/t2 data points, thus the acquisition time of both,
conventional and randomly sampled experiments were equal. The spectra were transformed with the resolution of 128� 256� 1024
points in F1, F2, and F3, respectively.
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experiments with improved achievable resolution
per unit of acquisition time while retaining read-
ability and resolution of high dimensionality. The
superior spectral resolution feasible by the single
step FT on randomly sampled data sets is of high
importance regarding protein NMR spectroscopy.
The overall sensitivity in randomly sampled mul-
tidimensional experiments is slightly reduced,
however, the most of high-dimensionality experi-
ments are limited rather by resolution require-
ments, especially when modern cryogenically
cooled probes at high B0 field are used. Similarly
to conventional data acquisition and sequential
FT processing the proposed method does not
depend on a priori assumptions with regard to
the number and shape of the signals, and could
be applied to any multidimensional NMR experi-
ment. The described technique could be also
applied for processing of unconventionally sam-
pled Magnetic Resonance Imaging signals without
necessity of time domain signal interpolation.
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